Pressure Distribution, Orifice, Pipe \& Pump Sizing

This design worksheet was developed by Saskatchewan Onsite Wastewater Management Association.
The completed installation is to comply with Saskatchewan Onsite Wastewater Disposal Guide 2018
This worksheet is for use in Saskatchewan to: size the orifices in distribution lateral pipes, size effluent delivery piping, and to calculate the required capacity and pressure head capability of the effluent pump.

It can be used for: calculating delivery of effluent to laterals in disposal fields, mounds and sand filters.
This worksheet does NOT consider all of the mandatory requirements of the Guideline
It is intended for use by persons having training in the private sewage discipline.

Use only Imperial units of measurement throughout (feet, inches, Imperial gallons, etc...).

Step 2) Select the size of orifice in the laterals:

Minimum size: 13.4.13.3
1/8"
Orifice Diameter selected

P2

Note: larger sizes are less likely to plug.

Step. 3) Select the spacing of orifices and determine the number of orifices to be installed in distribution laterals:

Select a spacing of orifices to attain even distribution over the treatment area:
13.4.13.
13.4.13.2

If laterals are of differing lengths, calculate each separately and add the number of orifices together.

Step 4) Determine the minumum pipe size of the distribution laterals:

Enter the system design information into the 3 boxes below. If distribution laterals are of differing lengths, each lateral must be considered separately.

Orifice Diameter
Length of Distribution Lateral

From P2

ft .

From System Design Drawings

Total Orifices Each Lateral

From P3a

Use Table A.1.A. (pp 118-121) when applying the information entered in this step to determine the minimum size of the distribution lateral pipe.
From Table 13-12 or 13-13 \square in.

Step 5) Determine the total flow from all orifices:

Total Number of Orifices in all laterals

From P3b

Total flow from all lateral

Gal/min for each Orifice at Head Pressure Selected

X

\square at Head Pressure Selected orifices

Step 6) Select the type and size of effluent delivery pipe:

| | Type of pipe used for
 effluent delivery line | Pipe size selected |
| :--- | :--- | :--- | :--- |

Choose a friction loss from Tables 13-8 and 13-9 in between the bolded lines to ensure a flow velocity between 2 to 5 feet per second. The pipe size selcted will affect the amount of friction loss the pump must overcome to deliver effluent.

Step 7) Calculate the equivalent length of pipe for pressure loss due to fittings:
Values from Tables 13-10 or 13-11

Insert total from Worksheet "A" on last page (p.5) of this Pressure Distribution Worksheet

Equivalent Length of All Fittings

Step 8) Calculate the equivalent length of pipe from pump to the farthest end of header of distribution laterals for pressure loss:

Step 9) Calculate the pressure head loss in delivery pipe including fittings:

From P8

Don't forget to divide the length by 100 feet to match the factors in the tables.

Step 10) Calculate the total pressure head required at pump:

Step 11) Select the size of the drain back orifice if used and determine the flow from the drain back orifice. Then calculate total flow requirement for pump:

Size of Drain Back Orifice	Determine flow using Head Pressure at Drain Back Orifice	Flow from all lateral orifices		Total Imp. Gallons per Minute from the pump		
in.	Imp. gal /min	Imp. gal /min	$=$		Imp. gal /min	P11
	Use pressure head from P10 to find flow from Extended Orifice Discharge Table HO109-04	From P5				

Step 12) Details of the pump specifications required:
Required Flow Rate
(Imp. gal/min)

From P11
From

Imp. gal (P11) multiplied by 1.2 $=$ U.S. gallons

Required Pressure
Head (ft)

From P10

Required Flow Rate

(US gal/min)

Select the appropriate pump by reviewing the pump curve of available pumps. Select a pump that exceeds the requirments set out in this step by approximately 10% considering both pressure head and volume.

Step 13) Consider the pumping demands of the system. If they are considered excessive, redesign the pressure distribution system and recalculate the pump demands.

Worksheet "Appendix A" Determine Equivalent Length of Pipe due to fittings in piping system.

Determine the equivalent length of pipe to allow for friction loss due to fittings in the piping system:

